2016 Math Field Day Trigonometry (Open)

State the exact answer for each problem. Do **NOT** use decimal approximations for π, \(\sqrt{2} \), \(\sqrt{3} \), for example. Radicals must be in simplest radical form and fractions in simplest form, or lowest terms. If there are multiple solutions, separate them by a comma. If there is no solution, write 'NONE'.

1. ____________ Given \(\tan \theta = 2 \) and \(\sin \theta < 0 \), find the exact value of \(\sec \theta \).

2. ____________ The circle with center \(O \) has radius 2 in and the angle which sector \(AOB \) subtends is 60°. Find the area of sector \(AOB \).

3. ____________ Solve \(\sin x + \cos x \cot x = -\sqrt{2} \) in the interval \([0, 2\pi)\). Write your answer in radian measure.

4. ____________ Rewrite the angle \(\left(\frac{\pi}{4} \right) \) in radian measure.

5. ____________ Given \(\cot x = \pi \), find the exact value of \(\sin(2x) \).

6. ____________ A triangle \(ABC \) has sides \(AC = \sqrt{3} \) and \(AB = 1 \). Angle \(C \) is 30°. Find the length of side \(BC \).

7. ____________ Find the exact value of \(\cos \left(\frac{7\pi}{12} \right) \).

8. ____________ Simplify \(\tan x (\csc x - \sin x) \).

9. ____________ Find the exact value of \(\sin \left(\sin^{-1} \left(-\frac{\pi}{4} \right) + \cos^{-1} \left(-\frac{\pi}{4} \right) \right) \).